absaoss / spark-hats   0.3.0

Apache License 2.0 GitHub

Nested array transformation helper extensions for Apache Spark

Scala versions: 2.13 2.12 2.11

spark-hats

Build FOSSA Status

Spark "Helpers for Array Transformations"

This library extends Spark DataFrame API with helpers for transforming fields inside nested structures and arrays of arbitrary levels of nesting.

Usage

Reference the library

Scala 2.11Scala 2.12Scala 2.13
Maven Central
Maven Central
Maven Central
groupId: za.co.absa
artifactId: spark-hats_2.11
version: 0.3.0
groupId: za.co.absa
artifactId: spark-hats_2.12
version: 0.3.0
groupId: za.co.absa
artifactId: spark-hats_2.13
version: 0.3.0

Please, use the table below to determine what version of spark-hats to use for Spark compatibility.

spark-hats version Scala version Spark version
0.1.x 2.11, 2.12 2.4.3+
0.2.x 2.11, 2.12 2.4.3+
0.2.x 2.12 3.0.0+
0.3.x 2.11 2.4.3+
0.3.x 2.12, 2.13 3.2.1+

To use the extensions you need to add this import to your Spark application or shell:

import za.co.absa.spark.hats.Extensions._

How to generate Code coverage report

sbt ++{matrix.scala} jacoco -DSPARK_VERSION={matrix.spark}

Code coverage will be generated on path:

{project-root}/spark-hats/target/scala-{scala_version}/jacoco/report/html

Motivation

Here is a small example we will use to show you how spark-hats work. The important thing is that the dataframe contains an array of struct fields.

scala> df.printSchema()
root
 |-- id: long (nullable = true)
 |-- my_array: array (nullable = true)
 |    |-- element: struct (containsNull = true)
 |    |    |-- a: long (nullable = true)
 |    |    |-- b: string (nullable = true)
       
scala> df.show(false)
+---+------------------------------+
|id |my_array                      |
+---+------------------------------+
|1  |[[1, foo]]                    |
|2  |[[1, bar], [2, baz], [3, foz]]|
+---+------------------------------+

Now, say, we want to add a field c as part of the struct alongside a and b from the example above. The expression for c is c = a + 1.

Here is the code you can use in Spark:

    val dfOut = df.select(col("id"), transform(col("my_array"), c => {
      struct(c.getField("a").as("a"),
        c.getField("b").as("b"),
        (c.getField("a") + 1).as("c"))
    }).as("my_array"))

(to use transform() in Scala API you need to add spark-hofs as a dependency).

Here is how it looks when using spark-hats library.

    val dfOut = df.nestedMapColumn("my_array.a","c", a => a + 1)

Both produce the following results:

scala> dfOut.printSchema
root
 |-- id: long (nullable = true)
 |-- my_array: array (nullable = true)
 |    |-- element: struct (containsNull = false)
 |    |    |-- a: long (nullable = true)
 |    |    |-- b: string (nullable = true)
 |    |    |-- c: long (nullable = true)

scala> dfOut.show(false)
+---+---------------------------------------+
|id |my_array                               |
+---+---------------------------------------+
|1  |[[1, foo, 2]]                          |
|2  |[[1, bar, 2], [2, baz, 3], [3, foz, 4]]|
+---+---------------------------------------+

Imagine how the code will look like for more levels of array nesting.

Methods

Add a column

The nestedWithColumn method allows adding new fields inside nested structures and arrays.

The addition of a column API is provided in two flavors: the basic and the extended API. The basic API is simpler to use, but the expressions it expects can only reference columns at the root of the schema. Here is an example of the basic add column API:

scala> df.nestedWithColumn("my_array.c", lit("hello")).printSchema
root
 |-- id: long (nullable = true)
 |-- my_array: array (nullable = true)
 |    |-- element: struct (containsNull = false)
 |    |    |-- a: long (nullable = true)
 |    |    |-- b: string (nullable = true)
 |    |    |-- c: string (nullable = false)

scala> df.nestedWithColumn("my_array.c", lit("hello")).show(false)
+---+---------------------------------------------------+
|id |my_array                                           |
+---+---------------------------------------------------+
|1  |[[1, foo, hello]]                                  |
|2  |[[1, bar, hello], [2, baz, hello], [3, foz, hello]]|
+---+---------------------------------------------------+

Add column (extended)

The extended API method nestedWithColumnExtended works similarly to the basic one but allows the caller to reference other array elements, possibly on different levels of nesting. The way it allows this is a little tricky. The second parameter is changed from being a column to a function that returns a column. Moreover, this function has an argument which is a function itself, the getField() function. The getField() function can be used in the transformation to reference other columns in the dataframe by their fully qualified name.

In the following example, a transformation adds a new field my_array.c to the dataframe by concatenating a root level column id with a nested field my_array.b:

scala> val dfOut = df.nestedWithColumnExtended("my_array.c", getField =>
         concat(getField("id").cast("string"), getField("my_array.b"))
       )

scala> dfOut.printSchema
root
 |-- id: long (nullable = true)
 |-- my_array: array (nullable = true)
 |    |-- element: struct (containsNull = false)
 |    |    |-- a: long (nullable = true)
 |    |    |-- b: string (nullable = true)
 |    |    |-- c: string (nullable = true)

scala> dfOut.show(false)
+---+------------------------------------------------+
|id |my_array                                        |
+---+------------------------------------------------+
|1  |[[1, foo, 1foo]]                                |
|2  |[[1, bar, 2bar], [2, baz, 2baz], [3, foz, 2foz]]|
+---+------------------------------------------------+
  • Note. You can still use col to reference root level columns. But if a column is inside an array (like my_array.b), invoking col("my_array.b") will reference the whole array, not an individual element. The getField() function that is passed to the transformation solves this by adding a generic way of addressing array elements on arbitrary levels of nesting.

  • Advanced Note. If there are several arrays in the schema, getField() allows to reference elements of an array if it is one of the parents of the output column.

Drop a column

The nestedDropColumn method allows dropping fields inside nested structures and arrays.

scala> df.nestedDropColumn("my_array.b").printSchema
root
 |-- id: long (nullable = true)
 |-- my_array: array (nullable = true)
 |    |-- element: struct (containsNull = false)
 |    |    |-- a: long (nullable = true)

scala> df.nestedDropColumn("my_array.b").show(false)
+---+---------------+
|id |my_array       |
+---+---------------+
|1  |[[1]]          |
|2  |[[1], [2], [3]]|
+---+---------------+

Map a column

The nestedMapColumn method applies a transformation on a nested field. If the input column is a primitive field the method will add outputColumnName at the same level of nesting. If a struct column is expected you can use .getField(...) method to operate on its children.

The output column name can omit the full path as the field will be created at the same level of nesting as the input column.

scala> df.nestedMapColumn(inputColumnName = "my_array.a", outputColumnName = "c", expression = a => a + 1).printSchema
root
 |-- id: long (nullable = true)
 |-- my_array: array (nullable = true)
 |    |-- element: struct (containsNull = false)
 |    |    |-- a: long (nullable = true)
 |    |    |-- b: string (nullable = true)
 |    |    |-- c: long (nullable = true)

scala> df.nestedMapColumn(inputColumnName = "my_array.a", outputColumnName = "c", expression = a => a + 1).show(false)
+---+---------------------------------------+
|id |my_array                               |
+---+---------------------------------------+
|1  |[[1, foo, 2]]                          |
|2  |[[1, bar, 2], [2, baz, 3], [3, foz, 4]]|
+---+---------------------------------------+

Other transformations

Unstruct

Syntax: df.nestedUnstruct("NestedStructColumnName").

Flattens one level of nesting when a struct is nested in another struct. For example,

scala> df.printSchema
root
|-- id: long (nullable = true)
|-- my_array: array (nullable = true)
|    |-- element: struct (containsNull = true)
|    |    |-- a: long (nullable = true)
|    |    |-- b: string (nullable = true)
|    |    |-- c: struct (containsNull = true)
|    |    |    |--nestedField1: string (nullable = true)
|    |    |    |--nestedField2: long (nullable = true)

scala> df.nestedUnstruct("my_array.c").printSchema
root
|-- id: long (nullable = true)
|-- my_array: array (nullable = true)
|    |-- element: struct (containsNull = true)
|    |    |-- a: long (nullable = true)
|    |    |-- b: string (nullable = true)
|    |    |-- nestedField1: string (nullable = true)
|    |    |-- nestedField2: long (nullable = true)

Note that the output schema doesn't have the c struct. All fields of c are now part of the parent struct.

Changelog

  • 0.3.0 released 3 August 2023.

    • #38 Add scala 2.13 support.
    • #33 Update spark test to 3.2.1.
    • #35 Add code coverage support.
  • 0.2.2 released 8 March 2021.

    • #23 Added nestedUnstruct() method that flattens one level of nesting for a given struct.
  • 0.2.1 released 21 January 2020.

    • #10 Fixed error column aggregation when the input array is null.
  • 0.2.0 released 16 January 2020.

    • #5 Added the extended nested transformation API that allows referencing arbitrary columns.

License

FOSSA Status